

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

IEEE Conference on Network Function Virtualization and
Software Defined Networks
6-8 November 2017 – Berlin, Germany

Tutorial on unikernels, Edge Computing & IoT

Hands-on Paper

The experiments will run on emulab infrastructure based on
the department of Applied Informatics of University of
Macedonia, Thessaloniki, Greece.

There are nine machines dedicated to the current
tutorial. They all have an IoT (zolertia zoul) device
connected via the USB (serial-tunslip).

Node 1: Temperature + Humidity, Gyroscope
Node 2: Temperature + Humidity, Gyroscope
Node 3: Temperature + Humidity
Node 4: Light
Node 6: Light
Node 7: Light
Node 8: Barometer
Node 9: Barometer
Node 11: Barometer
Node 13: Gyroscope

 Figure 1: miniPCs with IoT Rack in UoM,

Greece

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Node Red

Internet

Lightweight
Cloud(s)

Sink

Hypervisor (Xen)

OS

Files

SQLi

uniKernel

Testbed-PC
UoM

mqtt

Testbed-PC
UoM

Testbed-PC
UoM

Global
Controller

Global

dB

dB replicate

Not implemented

Tuneslip

Serial Com
802.15.4

Zolertia IoT devices

IPv6

Figure 2: Abstract View of the Experiment

In general, you can copy & paste all code lines (font: courier)

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Hands-on 1.1 IoT – Contiki

Read Sensor Data from an IoT Device

Login to one of the following stations (Use putty or ssh): mpcXX.swn.uom.gr

mpc1 mpc2 mpc3 mpc4 mpc6 mpc7 mpc8 mpc9 mpc11 mpc13

Username: nfvsdn
Password: nfv123

Serial Port communication

For the experiment to work, we need the current user to be able to communicate with the
serial port. The appropriate rights must be delegated to the user nfvsdn

To check, run the command:

groups

You should see

nfvsdn2017 root dialout

If you don’t see dialout, do the following:

sudo usermod -a -G dialout nfvsdn # nfvsdn is the username

Then you must close the terminal and login again

Go to the example folder:

cd ~/contiki/examples/swn/01-iotsense/

Declare the target device, i.e. the type of IoT device (zoul = zolertia)

make TARGET=zoul savetarget

Compile the particular code file (iotsense.c). Be careful, no “.c” at the end.

make iotsense

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Upload to the IoT device the already compiled file

make iotsense.upload

Login into the IoT device (zolertia connected via USB/serial) and see the results of the above code:

make login

You should see the following:

Summary: You compiled a C language code, uploaded it to the IoT device, and did login to this device to
see the results (the IoT device “sees” your terminal as an output-terminal device).

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Hands-on 1.2 (a) IPv6 – Broadcast

IPv6 Broadcasting of IoT sensor data

Login to one of the following stations (Use putty or ssh): mpcXX.swn.uom.gr

PC mpc1 mpc2 mpc3 mpc4 mpc6 mpc7 mpc8 mpc9 mpc11 mpc13
IP 203 204 205 206 208 209 210 211 213 215

Emulab Node8 Node7 Node2 Node10 Node5 Node3 Node9 Node6 Node1 Node4

IPv6

fe80
0000
0000
0000
0212
4b00
060d
b123

fe80
0000
0000
0000
0212
4b00
060d
60e2

fe80
0000
0000
0000
0212
4b00
060d
b152

fe80
0000
0000
0000
0212
4b00
060d
6227

fe80
0000
0000
0000
0212
4b00
060d
b13c

fe80
0000
0000
0000
0212
4b00
060d
6145

fe80
0000
0000
0000
0212
4b00
060d
615e

fe80
0000
0000
0000
0212
4b00
060d
6132

fe80
0000
0000
0000
0212
4b00
060d
60b1

fe80
0000
0000
0000
0212
4b00
060d
60b5

Username: nfvsdn
Password: nfv123

cd ~/contiki/examples/swn/02-broadcast

Compile and Upload to the IoT device

make broadcast.upload

Login into the IoT device (zolertia connected via USB/serial) and see the results of the above code:

make login

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Hands-on 1.2 (b) IPv6 – Multi-hop RPL -UDP

IPv6 Multi-hop RPL UDP

Username: nfvsdn
Password: nfv123

cd ~/contiki/examples/swn/03-multihop

 UDP-
Server

UDP-Clients

PC mpc1 mpc2 mpc3 mpc4 mpc6 mpc7 mpc8 mpc9 mpc11 mpc13
IP 203 204 205 206 208 209 210 211 213 215

Emulab Node8 Node7 Node2 Node10 Node5 Node3 Node9 Node6 Node1 Node4
IPv6 fe80

0000
0000
0000
0212
4b00
060d
b123

fe80
0000
0000
0000
0212
4b00
060d
60e2

fe80
0000
0000
0000
0212
4b00
060d
b152

fe80
0000
0000
0000
0212
4b00
060d
6227

fe80
0000
0000
0000
0212
4b00
060d
b13c

fe80
0000
0000
0000
0212
4b00
060d
6145

fe80
0000
0000
0000
0212
4b00
060d
615e

fe80
0000
0000
0000
0212
4b00
060d
6132

fe80
0000
0000
0000
0212
4b00
060d
60b1

fe80
0000
0000
0000
0212
4b00
060d
60b5

Server Side – Tutor MPC1 – (node 8) : udp-server.c

make udp-server.upload login

Client Side – Students’ PCs (MPC2,3,4,6,7,8,9,11,13)

make udp-client.upload login

Exercises:
1. Decrease the message frequency…
2. Change the message from hello to your name…
3. Send the CPU temperature to the sink…

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Hands-on 2.1 Unikernels

In this example, we will run a unikernel which is loading a dB (sqlite), connects with the sink IoT
(zolertia) connected to the USB port (emulated as a serial via tuneslip) of mpc1, and then
subscribes to an mqtt broker to receive information from all IoT devices-clients connected to
the sink.

Run the command ifconfig
If you can see the interface br0 AND THE INTERFACE wsl1 HAVING AN IPv4 address, omit this
step.

Otherwise, you must (re-) initialize the xen server parameters (dhpc server, ad-hoc networking,
etc.):

cd /share/scripts

./enable-ad-hoc

./createmecnetwork

./configure-network

Go inside the folder rumprun-packages/python3/hello-world

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

cd ~/rumprun-packages/python3/hello-world

Inside you will find one python file: main.py

If you don’t want to change it (it is just the “hello-world” app), continue.

We need to create the main.iso HDD. In other words, this is going to be the primary HDD of the
rumpkernel. It will be combined (and compiled) with all the necessary files for python libraries.
This python libraries ISO has been created before (It takes a long time, and there is no need to
re-compile it every time)

sudo genisoimage -r -o main.iso main.py tutorial-
env/lib/python3.5/site-packages

cd ~/rumprun-packages/python3/

To run the unikernel make sure you are inside the folder:
~/rumprun-examples/python3/

Because of DHCP taxonomy, BEFORE RUNNING the following, change the mac address in line two
according to the following: (IP: 195.251.209.XXX)

mpc1 mpc2 mpc3 mpc4 mpc6 mpc7 mpc8 mpc9 mpc11 mpc13
203 204 205 206 208 209 210 211 213 215

node8 Node7 Node2 Node10 Node5 Node3 Node9 Node6 Node1 Node4
CB CC CD CE D0 D1 D2 D3 D5 D7

Check the mac address second tuple ABOVE, and insert it in the second line below.

sudo /users/nfvsdn/rumprun/rumprun/bin/rumprun xen \
-I if,xenif,'bridge=br0,mac=52:D5:00:00:00:2' \
-W if,inet,dhcp -i \
-b images/python.iso,/python/lib/python3.5 \
-b hello-world/main.iso,/python/lib/python3.5/site-packages \
-e PYTHONHOME=/python \
-- examples/python.bin -m main

Analysis of the above commands:

sudo /users/nfvsdn/rumprun/rumprun/bin/rumprun xen \

is running the executable of the rumpkernels (rumprun) specifically for xen VM.

-I if,xenif,'bridge=br0,mac=52:CB:00:00:00:2' \

-W if,inet,dhcp -i \

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Gets a DHCP address

-b images/python.iso,/python/lib/python3.5 \

The image python.iso is already created. It takes long time to create it since it is compiling all
the libraries of python (think about it like the “Program Files”)

-b hello-world/main.iso,/python/lib/python3.5/site-packages \

Is creating another iso with all the user created files. Every time the user changes something
(e.g. edit the main.py code, this will be recompiled)

-- examples/python.bin -m main

Is just indicating to the OS to find and execute the file named main(.py) (python file).

If all goes well, you must see messages printing!

How to see/kill a running unikernel

To see if a unikernel is running (You need to open a NEW terminal):

sudo xl list

You see a list like this

Name ID Mem VCPUs State Time(s)
Domain-0 0 3843 2 r----- 663.2
rumprun-python.bin 2 64 1 ---s-- 0.3

To destroy a particular unikernel:

sudo xl destroy [ID]

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Hands-on 2.2 Lightweight-edge computing-IoT

Mosquito broker will already be running in mpc1. The following is information ONLY.

To run the mosquito broker (with “nohup” it runs on the background, so the terminal can be used for
other activities). Make sure you include the ampersand (&) at the end:

nohup mosquitto &

press ctrl+C # mosquito will still run

if you want to kill mosquito:

killall mosquitto

Running IoT server-client

INFORMATION ONLY. NO NEED to run this

Running the border router
(For the experiment, the sink will be running only on one machine, i.e. mpc1)

cd ~/contiki/examples/swn/00-br6
make border-router.upload && make connect-router

User needs to do the following:

This must be run to all available machines

Running the IoT client on ANOTHER machine than mpc1:

cd ~/contiki/examples/swn/04-mqtt-client

make mqtt-client.upload

Running mqtt-connection unikernel example

cd ~/rumprun-packages/python3/examples/mqtt

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

There is a collection of files & programs there that we will include to the unikernel. File main.py is the
starting point. There is also an sqlite python program (sqli_mem2.py) that creates a dB and stores the
data from the IoT device. Keep in mind that all the client IoT devices connected to the base (sink) device,
will publish their data to the mqtt broker, which will be received via the USB port (tuneslip-serial) of
mpc1. Each unikernel will subscribe to its “own” IoT device mqtt channel
(zolertia/evtnodeXX/status) and then store the data inside the sqlite database in the
unikernel.

The future works here are:

1. For the same unikernel to be transferred to another machine-server-infrastructure, while the
mobile IoT device(s) is wandering around the premises (city, building, certain area, etc.).

2. For each cloud based infrastructure, to have its own mqtt server, dedicated to the particular IoT.
In this scenario, the IoT data is only travelling to the edge of the network. In a second phase, the
central application is asking specific aggressive questions to each distributed database (e.g. send
me the average temperature for the last three days of your IoT).

Testing prerequisites for unikernel

First thing is to check if the code is running successfully:

cd ~/rumprun-packages/python3/examples/mqtt

TO DO:

Open the file main.py (use your preferable Linux editor)

nano main.py

Find the line:

MQTT_TOPIC_EVENT = "zolertia/evt/status"

Change the evt word to evtnodeXX where XX is the node number. E.g. if you are in node7, change it
to:

MQTT_TOPIC_EVENT = "zolertia/evtnode07/status"

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Save and exit (Ctrl+X , then enter y, then enter, if you used nano)

Run the program to check if all is ok:

python ./main.py # or simply ./main.py

You should see at least the following message:

Starting main.py

Possible problems

If you don’t see anything else, it means that: 1. Mqtt broker is not running, 2. There is no sink IoT
connected with the correct image, 3. There is no IoT client device connected to the sink.

If you see a message similar to: paho library is missing

sudo pip3 install paho-mqtt

If no problems, you should get something like the following:

INFO - Connecting to 195.251.209.203
DEBUG - CONNECTED to 195.251.209.203
INFO - Keeping connection alive . . .
INFO - Connected to 195.251.209.XXX

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

DEBUG - Subscribed to zolertia/evtnodeXX/status
DEBUG - Subscribed to zolertia/cmd/leds
The last two lines, assure you that the mosquito broker is up & running

Summary: You just executed a python code into the mini-pc for testing. You DIDN’T run the
unikernel yet.

Preparing the unikernel HDD (hdd.img)

As mentioned above, you are inside the ~/rumprun-packages/python3/examples/mqtt
folder. Inhere you have all the necessary files for the unikernel. After you alter those files, you need to
insert them into the hdd.img :

cd ~/rumprun-packages/python3/examples/

First you need to mount it:

sudo mount hdd.img /mnt/iso

Now the hdd is ready for editing. Go into the folder

cd ~/rumprun-packages/python3/examples/mqtt

and copy all fresh files into the mounted hdd:

sudo cp -r . /mnt/iso

You just updated the hdd.iso. Now unmount it:

sudo umount /mnt/iso

cd ~/rumprun-packages/python3

Running unikernel

INFORMATION ONLY
If dhcp is not assigning IP, go to the root, cd \ and run cat /tmp/mecnetwork.xml
Look at the second tuple and note it (e.g. D0). This is what you insert in the mac address below

Because of DHCP taxonomy, BEFORE RUNNING the following, change the mac address in line two
according to the following: (IP: 195.251.209.XXX)

mpc1 mpc2 mpc3 mpc4 mpc6 mpc7 mpc8 mpc9 mpc11 mpc13
203 204 205 206 208 209 210 211 213 215

node8 Node7 Node2 Node10 Node5 Node3 Node9 Node6 Node1 Node4

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

CB CC CD CE D0 D1 D2 D3 D5 D7

Check the mac address second tuple ABOVE, and insert it in the second line below.

sudo /users/nfvsdn/rumprun/rumprun/bin/rumprun xen \
-I if,xenif,'bridge=br0,mac=52:CD:00:00:00:2' \
-W if,inet,dhcp -i \
-b images/python.iso,/python/lib/python3.5 \
-b examples/hdd.img,/python/lib/python3.5/site-packages \
-e PYTHONHOME=/python \
-- examples/python.bin -m main

Make sure you are in dir /python3:
cd ~/rumprun-packages/python3

You are ready to run the unikernel with the NEW hdd.img. Execute the above, AFTER YOU CHANGED
THE TUPLE in yellow.

Possible Problem

If the unikernel is stuck in this line:
INFO - Connecting to 10.2.0.203
OPEN A NEW terminal, and run the scripts again
cd /share/scripts
./enable-ad-hoc
./createmecnetwork
./configure-network

You should see the unikernel receiving JSONs from the client IoT:

IEEE Conference on Network Function Virtualization 6-8 November 2017
and Software Defined Networks Berlin, Germany

Future Work

Server

Hypervisor (zen)

WSN2

WSN1

Server

Hypervisor (zen)

Mobile
IoT DevGlobal

Controller

Global

dB

Figure 3: the unikernel is following the mobile IoT along the edge of the network for an implementation of Mobile Edge
Computing (MEC)

Thank you

Lefteris Mamatas

George Violettas

Tryfon Theodorou

